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SUMMARY 

Two different approaches to the evaluation of the height equivalent to a 
theoretical plate (HETP) of uniform tubes are reviewed and shown to be equivalent, 
and the latter is applied to the calculation of the HETP of tubes with a rectangular 
cross-section. 

The dynamic diffusion constant and, by implication, the height equivalent to a 
theoretical plate -(HETP) of retentive rectangular tubes were treated in a former 
publication’ without regard to the “end effect” in tubes of finite width. This effect 
could be eliminated by bending the tube around and closing it on itself, so as to have. 
in efrect, an annular tube, but the realization of such a structure would constitute a 
mechanical impossibility. This effect could be eliminated also by terminating both 
ends of the rectangular cioss-section of the tube with, e.g., an enlarged circular 
portion with a diameter of approximately one and a half times the thickness of the 
tube section, as illustrated by Fi, -, =. 3 so as to have a fluid flow near the end equal, on 
an average, to the average flow in the entire tube; but here again this would imply a 
construction not realizable when the tubes are formed by placing between two flat 
plates a thin sheet of flat material suitably cut out so that the rectangular tubes are 
constituted by the spaces left open between the two plates. 

The specific purpose of this report is the determination of the increase in HETP 
due to the end effect in rectangular tubes with a large aspect ratio. This can be done 
with two methods which are quite different in approach, while being substantially 
equivalent, as will be shown first. Both methods are readily applicable to straight 
tubes with circular, elliptical, annular or rectangular cross-sections in which the vis- 
cosity controlled fluid has a velocity component in the direction of the lube axis. 

The essential points of the first method for the case of a retenrionless tube (see 
refs. 2-7) are as follows. The concentration f(s Y - f) of any injected sample is , _ 9 -, 
inserted in the diffusion equation 

df’ 2j’ 2f DA’f‘=-=z+,,.- 
dt ds (14 
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where A2fdenotes the laplacian offin the y-z plane, and the solution of eqn. la is 
constrained by the boundary condition at the tube wall expressed by equating to zero 
the vectorial product 

ds’x gradf=O (lb) 

where ds’ designates a vectorial element of the cross-section periphery. 
Let v,, designate the average velocity and introduce the change of variable: 

Xl = x - v()t 

Eqn. la becomes: 

DA’f= $+ (v - v&g 
1 

Let furtherKx, t) designate the average concentration in any section of the tube with 
the abscissa x1, and define Af by: 

f =f-i- Af (3) 

The application to both sides of eqn. lc of the operator (l/S) s dS, where the integral 
extends over the tube cross-section, gives: 

d2f- i;f- 1 
D-e=t + s lb - %_I)-~- 

ZAf @J 
1 

(4) 

When f as given by eqn. 3 is merely substituted in lc we obtain: 

iY2f- a20 
9 

cif- 
A”Af+,,:+,,:,=,+- 

Subtracting eqn. 4 from 5 and making the assumption that, after a sufficiently large 
diffusion time, we have Af -+ f<o that terms in Af can he neglected against similar 
terms in f, yields: 

D A2 Af = (v - vc) (8fpx,) (6) 

Since v - va = 0, eqn. 6 admits a solution satisfying the boundary condition 1 b; this 
solution can be written, symbolically 

Af= $-a-2 (” - vo)_g 
-1 

and substitution of eqn. 6a in 4 and re-arranging the terms gives: - 
(v - v,,) A-’ (v - va) dS 1 -g= $- 

1 

@a) 

(7) 
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Eqn. 7 indicates that after a sufficient time the diffusion process will take place as if it 
were controlled by the dynamic diffusion constant: 

D, = D - (l/LX) J (v - vO) A-2 (v - v,,) dS (8) 

The second method consists in making first the same coordinate change defined 
by eqn. 2 and in postulating that after a su5ciently long time the concentration of a 
sample injected at time t = 0 can be represented by the expression 

f= i_exp _ ‘-Kii FJ2 
Ji 1 1 1 (9) 

where e designates a function of y and z. 
When eqn. 9 is substituted in the diffusion equation lc three groups of terms 

are obtained, some with the coe5cient (x1 - e)2; some with the coe5cient (x1 - e); 
and a third group with neither. Satisfying eqn. lc independently with each group, the 
first and third group give the relation 

D, = D [I -I- (ae/ay)2 + (ae/az)2] (10) 

and the second 

A2e = --(I/D) (v _ vo) (11) 

wherefrom we can write, symbolically 

e = -(l/D) A-‘(v - v,,) (12) 

to which must be added the boundary conditions at the retentionless wall similar to 
eqn. lb: 

dSx grade=0 (13) 

To the postulation expressed by eqn. 9 we must add now the assumption that 
after a su5ciently large diffusion time we obtain D, with good approximation by 
averaging the right-hand side of eqn. 10 over the tube cross-section: 

(14) 

The equivalence of the two methods can be demonstrated by showing that the 
respective second terms of the right-hand side of eqns. 8 and 14 are equivalent. The 
second term of eqn. 10 can be written, with eqn. 11 

-(D/S) j e A2 e dS (15) 
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To this effect we note first that the right-hand side of eqn. 13 can be multiplied 
by the scalar quantity e 

dZ x e-grade = 0 

which is equivalent to writing for the entire cross-section 

5A ’ e2 dS = 0 (17) 

which, when developed, gives the left-hand side of eqn. 16, Q.E.D. 
We apply now the second method to the determination of the HETP of a tube 

with the rectangular cross-section 2A x 2B and a large aspect ratio. 
A first task consists in determining the fluid velocity as a function of the y, z 

coordinates of the tube section. This velocity is related to the pressure drop by the 
classical expression 

p A2 v = dp1d.u (1% 

with the boundary conditions at the tube walls: 

v=O at y=+A and z=+B (19) 

We shall restrict our attention to the case of a large aspect ratio, i.e., when: 

A/B $- 1 (20) 

We normalize eqns. 18 and 19 and write 

AzV= -1 

with the boundary conditions 

v=O at JO = t an/2 and z = &- rrJ2 

for the case: 

a$- 1 

We start from the identity 

_1=i$ = (-1)” c 2m + * -cos(2nz + l)Z. 
Oc (-1)” 

a c 
~ x cos (2rr f 1) z 
21 + 1 

m=O n=O 

(184 

(19a) 

(20a) 

(21) 
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and a simple integration with respect to the separated variables J’ and z gives us: 

cc e 
(2m f 1) 

v&z) = $ 

cc 

(-1I)m+ncos a J'COS(222 + 1)i 

X 

m=On=O (2222 + 1) (Zn + l)[(~~~rQ+ l>i + (2% f l)Z] W 

which satisfies eqns. 18a and 19a. 
Integration of Y over the entire tube cross-section gives us the total flow: 

X 

(2m + 1)’ (h + l)‘i+; ‘>2 (2rr + 1)2] (23) 
When c~ + 1 a first approximation for F gives us 

_ @a = 
cc c 1 1 640 ir’ 7r4 7i4a 

F 
1 

= -.-_- = - 72 (272 + 1)’ c (212 + 1) 4 x2 8 96 12 (24) 

m=O n=O 

which is what we expect in first approximation from a cross-section na x 7~ for CI 9 1. 
with v normalized as per eqns. 18a and 19a. 

However, we know that at the extremities of the rectangular cross-section there 
will be a somewhat stagnant layer and that, even if, with growing ~1, the importance of 
this layer as a fraction of the entire flow decreases with l/a, its retentiveness having to 
diffuse over a distance which increases with a, its net effect will not be negligible. 
Therefore, we should evaluate the right-hand side of eqn. 23 with a net error which 
decreases with a, in order to obtain a correct assessment of fhe stagnant end-layer 
effect. 

Toward this purpose we evaluate eqn. 23 slice by slice for each N value, and 

write: 

F- = 7 i: (2n : l)Z 2 (2n2 + 1)2 [(2a2 : ‘>’ + (212 + 1)2] 
n=O n 

(23a) 
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We then approximate the remnant of & with an integral starting at some 
value m, of m 

z= 2 (2m + 1,1[(2nr :‘); + (2n + l)‘] + 
cz 

+ 

1)2 1 
mo-1 

1 = 
c 

2 + m=O (232 + 1)2 
,(2,,rctl ‘> 

+ (2n + 1)2 1 (2n + 1)2 x 

z 

S[ 1 1 
X 

m. (W z - (2m)* + a2(2r2 + 1)2 1 dm 

c 1 
= 

2 + m=O (2m + 1)2 
rc-’ l> 

+ (2n + 1>2 1 2a(h + 1)3 x 

(2n + 1) a x 

II 
- arctan (2’ + ‘) a 

2m, 2m, 1 (25) 

and we note that this approximation is correct to within less than a fraction, 1/4m& of 
the dominant member of the last bracket. 

We are interested in knowing within a fraction l/a the departure from the 
right-hand side of eqn. 24 of the right-hand side of eqn. 23a when the right-hand side 
of eqn. 25 is substituted for ‘& in eqn. 23a. Therefore, we should select values of mO 
which are small enough so that the departure of the tist term for x1 from its value 
for very large values of a, when multiplied by a, decrease with a; yet m, must be large 
enough so that the fractional error of less than 1/4mz caused by the substitution of an 
integral for the summation decreases also with a. Both requirements will be met if we 
select for m, a value of the order of a ‘I3 _ In this case, the part of the right-hand side of 
eqn. 25 which, when multiplied by a, remains stationary, is the second term of the 
bracket which, being negative as it should, represents the value of Fr - F2 for large a 

values and constitutes a measure of the stagnancy-of the layers at both ends of the 
rectangular cross-section_ 
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We have therefore, for large a 

-Ax1 = sr/4a(n + l)3 

and 

cx 

Fl - F2 = 7 c 2-i 16 
_ = -* 

4a(m + 1)” 72 
S5 

n=O 

where: 

(26) 

(26a) 

Division of Fl - F, by ~‘/12 gives the extent of the stagnant layer at each end 
of the cross-section as a fraction, E, of the half tube thickness: 

E = 16.&-E = O-63024 
X Z? 

(27) 

We know that the contribution of the stream velocity to the dynamic diffusion 
constant within a flat tube and without reckoning the end effect is the thickness term 
in eqn. 40 of ref. 1 for k = 0 

AD,=D,-D=~-- V;Z; 

10.5 D 

where x0 designates the half tube thickness, and we calculate the effect of the stagnant 
end layer by postulating that we have a simple superposition of the effect expressed in 
eqn. 28 and the end effect. Toward this purpose we assume that the flow proceeds as a 
block at the average velocity, vo, while the sample can diffuse freely with the stagnant 
layer, and compute the derivative of the e function from eqn. 13. Since F = 0 in the 
stagnant layer, we have e’ = 0 at the wa!l and e’ = (v,/D) - 0.63024 - z. at the stagnant 
layer-stream interface. From there on e’ decreases steadily in the stream which pro- 
ceeds at a velocity which exceeds the velocity average by the amount 0.63024/u so that 
at the other end e’ has the value -0.63024 after which it increases in the stagnant 
layer until it has again the value zero at the end wall. 

The mean square value of e is therefore 

f 0.63024 -T 

2 

> 
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and its contribution, AD,, to the dynamic diffusion constant will be therefore, in 
accordance with eqn. 14 

AD,,, = 0.13240 - &;/D (W 

which, when added to the regular thickness term gives: 

D, = D + 0.13240 - vfjz;/D (30) 

By comparison with eqn. 28 we see that the end effect contribution to dynamic 
diffusion is 6.9512 times larger than the thickness term. It means also that the optimal 
HETP will be ,_/m = 2.820 times larger than that calculated on the basis of 
the thickness term only. Figs. 1 and 2 illustrate the surprisingly large diffusion dif- 
ference between the modified tube and the regular rectangular tube. 

I I 

Fig. 1. Rectangular tube profile. D, = D + 0.1514 - &$D. 

c 1 

Fig. 2. Tube,profile for minimization of end-effect. D, --, D + 0.0190 - 46/D_ 

The highly critical dependency of the diffusion constant upon uniformity of the 
tube cross-section should be noted. Thus, assuming an aspect ratio of 100 for the tube 
illustrated by Fig_ 2, if the two halves of the section were to differ by 1 o/0 in thickness, 
this would introduce another term in D, equal to 17.5 times the regular thickness 
term, and this effect would increase quadratically with the fractional difference be- 
tween the two halves. This conclusion can be readily established by using formulae 12 

and 14. 
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